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Abstract: The development of new spectral analysis methods in bio thin-film detection has 
generated intense interest in terahertz (THz) spectroscopy and its application in a wide range 
of fields. In this paper, it is the first time that machine learning methods are applied to the 
quantitative characterization of bovine serum albumin (BSA) deposited thin-films detected by 
terahertz time-domain spectroscopy. The spectra data of BSA thin-films prepared by solutions 
with concentrations ranging from 0.5 to 35 mg/ml are analyzed using the support vector 
regression method to learn the underlying model of the frequency against the target 
concentration. The learned mode successfully predicts the concentrations of the unknown test 
samples with a coefficient of determination R2 = 0.97932. Furthermore, aiming to identify the 
relevance of each frequency to the concentration, the maximal information coefficient 
statistical analysis is used and the three most discriminating frequencies in THz frequency are 
identified at 1.2, 1.1 and 0.5 THz respectively, which means a good prediction for BSA 
concentration can be achieved by using the top three relevant frequencies. Moreover, the top 
discriminating frequencies are in good agreement with the frequencies predicted by a long-
wavelength elastic vibration model for BSA protein. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Over the past decade, the simple, label free, and high sensitive protein detection techniques 
have been extensively investigated. Terahertz time-domain spectroscopy (THz-TDS) is one 
branch of these efforts that has been advancing rapidly in recent years. Because of the low 
photon-energy [1], high signal-to-noise ratio [2] and molecule resonance responses [3,4], the 
terahertz spectrum hosts a range of important microscopic phenomena of biomolecular 
interactions [5–7]. Thin films detection which is specialized to enable successful sensing for a 
small amount of sample (e.g. protein, DNA) has potential benefits to broaden THz-TDS bio-
applications [8]. Quantitative analysis has generated intense interest in a wide range of fields, 
including protein structure prediction and formulations optimization [9], cell culture 
conditions controlling and monitoring by improving target protein production [10]. However, 
quantitative characterization of the bio thin-films in terahertz frequency has not been 
intensely studied, since the interaction length between terahertz waves and a sample film is 
short that the extracted optical parameters are not reliable [11]. The demand for new terahertz 
spectra analysis methods in bio thin-film detection has increased significantly. Machine 
learning methods are capable of learning the underlying model of the experimental data and 
generalizing well to unknown test data. Therefore, they suit the requirements of data analysis 
for laboratory and industry purpose [12–15]. In this study, a machine learning framework is 
proposed to successfully predict the function of the frequencies and the target concentrations 
for an exemplar protein (bovine serum albumin protein) thin-film detected by the terahertz 
spectroscopy. 

Bovine serum albumin (BSA) is a serum albumin protein containing 583 amino acid 
residues with a molecular weight of 66.430 kDa [16,17]. It is a multifunctional and low-cost 
protein which is able to block the nonspecific binding sites during protein-protein 
interactions. Therefore, BSA has been widely used in various biochemical detection 
techniques such as ELISAs (enzyme-linked immunosorbent assay) [18,19], 
immunohistochemistry [20] and immunoblots [21]. Moreover, by comparing an unknown 
quantity of protein to known amounts of BSA, it is often used as a protein concentration 
standard, which is therefore of great importance to identify BSA quantitatively and 
qualitatively. Even though BSA in a solid state (pressed pellet) and in solution has been 
previously investigated using THz spectroscopy [22–28], a great challenge for the property 
identification of BSA thin-films is obvious because subwavelength sample thicknesses 
impose great difficulties to conventional terahertz spectroscopy [29]. This work presents the 
first THz time-domain spectroscopy investigation of the BSA thin-films with a support vector 
regression (SVR) method to learn the function of the frequency and the target concentration. 
Comparing most of the previous prediction methods which are based on the thin-film 
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thickness measurements [30–32], accurate quantitative prediction of unknown samples can be 
achieved by the learned function in the SVR model, without the film thickness discussion. 
Furthermore, SVR model applied to THz data in this work allows one to take into account 
possible nonlinearities in the detected signals to identify protein concentrations. Finally, the 
maximal information coefficient (MIC) was applied to identify the most discriminating 
frequencies to concentrations of BAS in THz region, which correspond to the fundamental 
vibration frequencies of a long-wavelength elastic vibration model. 

2. Experimental method 

2.1 Sample preparation 

Double-side-polished 0.5 mm thick quartz substrates were ultrasonically cleaned for 10 min 
successively in acetone, isopropyl alcohol, and deionized (DI) water and then surface treated 
by O2 plasma for 5 min to improve the hydrophilicity. Prior to BSA deposited thin-films 
preparation, a BSA stock solution was made by dissolving 3.5 g of solid BSA powder 
(A3912; Sigma-Aldrich, St. Louis, MO) into 100 ml of DI water. The stock solution was 
further diluted to obtain 21 different concentrations (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 
5.0, 6.0, 7.0, 8.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0 mg/ml). The aqueous solutions 
at room temperature were clear and without precipitates. After being stirred for several 
minutes to improve the uniformity of the BSA thin-films, the BSA solutions at various 
concentrations were pipetted onto each quartz substrate with same volume by 20 ul. Each 
sample was prepared in a constant temperature and humidity laboratory with a standard 
approach so that the error for the actual concentration can be ignored. Liquid thin films were 
spin coated on quartz substrate by controlling the spin coating speed. To improve the 
crystallinity, the BSA thin-films were equilibrated for at least 30 minutes in a nitrogen 
atmosphere. The quantity of deposited BSA protein increased with increasing BSA 
concentration. 

2.2 THz-TDS measurement 

THz-TDS measurements were performed using free-space THz-TDS system in the 
transmission geometry. The system consists of 300 mW in mode-lock operation, 800 nm 
center wavelength and 84 MHz repetition rate pulse generated by a Ti:sapphire oscillator 
which is pumped by a 2.2 W 532 nm Nd:YV04 laser (Sprout Lighthouse Photonics). A GaAs 
semiconductor antenna is used for the THz pulse generation and a ZnTe crystal is employed 
for electro-optical detection. THz spectra were recorded from 0 to 3.3 mm (equal to a time 
window ranging from 0 to 22 ps), with a scan speed of 5 μm per step and an interval time of 
300 ms, resulting a nominal resolution of 45 GHz. All samples were fabricated on a sample 
holder with a circular area by ~3 mm in diameter. The optics was purged using nitrogen gas 
to remove the water vapor from the air to decrease the humidity down to less than 5%. The 
usable frequency range of the system is from 0.1 to 2.6 THz. Each sample was measured 7 
times in order to minimize the random errors produced by the system, as well as present 
heterogeneities in the sample. 

2.3 Machine learning methods 

2.3.1 Data denoising with principal component analysis (PCA) 

The system uncertainties are very influential for thin-film detection, which results in 
inevitably noise in the data set. The data processing procedure must be carefully chosen to 
avoid any deceptive result. A denoising method based on PCA is preformed firstly in this 
work. The scores of the 7 measurements for each concentration on the first two principal 
components are obtained. In the two-dimensional space, the centroid coordinates of these 7 
measurements are calculated, and the Euclidean distance of each measurement to the centroid 
is acquired. Then the 7 distance values are tested in T-test with a right-tailed hypothesis at 1% 
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significance level. We did one-sample Kolmogorov-Smirnov test to test the null hypothesis 
that the distance data comes from a standard normal distribution at the 5% significance level. 
The result suggests that the data is normally distributed. We also have performed ANOVA to 
find that the variances of the distance values in different concentration are significantly 
different. A measurement with significantly larger distance to the centroid is considered as an 
outlier or noise data as shown in Fig. 1. Based on PCA-denoising method, 12 outlier points 
are removed and we finally get a new data set with 135 row measurements, and 43 columns 
frequencies. 

 

Fig. 1. Schematic diagram of PCA-based denoising method. The scores plot of the first two 
principal components of the 7 measurements at the concentration of 6 mg/ml. 

2.3.2 Spectrum regression analysis by SVR 

After PCA-denoising processing, a spectrum regression analysis is performed using SVR 
algorithm. SVR is a universal regression method inheriting merits from support vector 
machines [33–35], e.g., the minimization of the structural risk, superiority of generalization 
for future test data, and ease of handling nonlinear problems with kernel trick. SVR has been 
successfully used in many fields such as time series prediction [36], X-ray pulse properties 
prediction [37], and material thermodynamic property prediction [38]. 

Given a training data set {(xi,yi)| xi ∈ Rm, yi ∈ R1,i ∈  [1]} of n instances, where each 
instance (xi,yi) consists of an m-dimensional vector xi∈Rm (m = 43) indicating the values of a 
measurement in 43 frequencies and a target concentration yi. The goal of SVR is to find a 
function f(x) of the frequencies against the concentrations y of BSA, such that all the training 
instances can be predicted with no more than a predefined deviation ε≥0 from the actual 
targets y and meanwhile f(x) is as flat as possible. 

In SVR, a generic form of f(x) is defined as follows: 

 ( )( ) Φf x w bx= +  (2) 

where w is a weight vector, b∈R is a bias term, Φ(x) is a mapping function that maps x to a 
higher-dimensional space if nonlinear regression is considered otherwise Φ(x) = x, and 
w•Φ(x) calculates the dot production of w and Φ(x). The flatness of f(x) can be ensured by 
minimizing the Euclidean norm ||w||2. A prediction on xi, i.e., f(xi), is considered accurate if 
|f(xi)-yi|≤ε. In practice, to allow deviation violation to some reasonable extent, two slack 
variables ξi≥0 and ξi*≥0 are usually introduced, such that 

 ( )i i iy f x ε ξ− ≤ +  (3) 

 *( )i i if x y ε ξ− ≤ +  (4) 
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where regression errors are tolerated up to the value of ξi and ξi*. The solving of f(x) can be 
formulated as a convex optimization problem: 

 ( )2 *

, ,
1

1
min

2

n

i iw b
i

w C
ξ

ξ ξ
=

+ +  (5) 

subject to Eq. (3) and (4). The positive constant C controls the trade-off between the flatness 
of f(x) and the tolerance of the deviation violation. The minimization problem in Eq. (5) can 
be solved more easily in its dual formulation with kernel trick [33]. In this study, a radial 
basis function kernel [39] is used. Once f(x) is solved, an unknown test instance can be 
predicted by inputting the 43 frequency values of this instance to f(x) to get the function 
output value. For our experiments, the epsilon-SVR model implemented in LIBSVM library 
[40] is applied and the parameters of the model are selected following ref [40]. 

2.3.3 Discriminating frequencies identification using MIC 

Beyond the regression study using SVR mode, we are also curious about the relevance or 
discriminability of the 43 frequencies to the target concentrations of BSA in the terahertz 
region. Thanks to the capability of identifying relationships between two variables and 
capturing a wide range of variable associations, MIC analysis [41] is taken into account. The 
basic idea of MIC is to use binning as a means to apply mutual information [42] on random 
variables. Let variable F denote a frequency of the data and variable Y denotes the 
concentration, in MIC, the ordered F values and Y values are divided into a bins and b bins, 
respectively, which results in an a-by-b grid G. The distribution of the values in F-Y space 
located in the cells of G is denoted as (F,Y)|G. Different grid partitions lead to different 
distributions. The statistic MIC is the maximum value of the characteristic matrix M(F,Y) 
defined as follows: 

 ( )( )
( )( )

{ },

,max |
,

log min ,
G

a b

F Y
M

I
F Y

a b
=  (6) 

where maxI((F,Y)|G) denotes the maximal mutual information of (F,Y)|G over all possible 
grids G. I(F,Y)|G calculates the mutual information of the probability distribution induced on 
the cells of a grid G, where the probability of a cell is the proportion of the value falling 
within the cell. Based on Eq. (6), we can obtain the MIC of F and Y as follows: 

 ( )
( )

( )( ){ },
MIC , Y max ,

a bab B n
F M F Y

<
=  (7) 

where n is the number of instances, B(n) is a function of n, which imposes an upper bounds 
on the sizes of G for searching the MIC value. In this study, B(n) = n0.4 is applied. A larger 
MIC(F,Y) value indicates that F is more relevant to Y, i.e., F is supposed to be more 
discriminating in regard to Y. 
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3. Results and discussion 

3.1 THz transmission spectra determination 

 

Fig. 2. (a) Time dependence THz intensity spectra of reference and BSA thin-films prepared 
by the protein aqueous solutions in the concentration range from 0.5 to 35 mg/ml; (b) The 
transmission spectrum for BSA thin-film prepared by the protein solution of 6 mg/ml from 0.1 
to 2.6 THz; (c) illustration of the data matrix with 147 rows (21 concentrations * 7 
measurements) and 44 columns (43 frequencies + 1 concentration value). 

Terahertz time-domain waveforms were recorded for BSA protein layer on quartz substrate 
by Es(t). The clean homogeneous empty quartz surface was measured as a reference Er(t) by 
moving the sample holder, enabling the spectroscopic properties of the sample to be 
accurately determined. By fast Fourier transforming, the frequency spectra of the sample 
Es(ω) and reference Er(ω) were obtained. The amplitude of the complex transmission 
coefficient of the sample Ts(ω) can be described by dividing the signal with the sample by the 
signal without the sample as detailed in Eq. (1). 

 
( ( ))

( ) [ ]
( ( ))

s
s

r

FFT E t
T abs

FFT E t
ω =  (1) 

Figure 2(a) shows the raw terahertz intensity signal in the time domain of BSA thin-films 
prepared by the protein aqueous solutions in the concentration range from 0.5 to 35 mg/ml 
(21 different concentrations). Because the sample thickness is much smaller than the 
wavelength (1 THz = 300 μm), the deviation of time dependent terahertz spectra is very 
small. The inset picture zoomed in Fig. 2(a) shows the terahertz intensity peaks which are 
different from each other, presenting the applicability of THz-TDS can be extended to thin-
film sensing. Terahertz transmission spectra of BSA thin-films with various quantities of 
protein are calculated according to Eq. (1). As an example, the transmission spectrum for 
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BSA thin-film prepared by a concentration of 6 mg/ml is shown in Fig. 2(b). The time 
window of about 17 ps was used in this measurement considering the thickness of the sample. 
Therefore, 43 sampling points (shown as red dots) from 0.1 to 2.6 THz with a consistent 
frequency step (~58.9 GHz) are selected in order to present the characteristic responses of 
samples to frequency sufficiently. The semi-periodic oscillations in Fig. 1(b) were caused by 
the multiple reflection effect at the surface of the quartz substrate (0.5 mm thick) based on our 
basic calculation. The oscillation can be ignored as the amplitude of the complex transmission 
coefficient of the sample Ts(ω) can be defined as the ratio of sample and reference as detailed 
in Eq. (1). Figure 2(c) demonstrates the way to create the data in matrix format. Making 7 
measurements for each sample, 147 transmission spectra each characterized by 43 sampling 
points and 1 concentration value are preprocessed with PCA for data denoising and then input 
to SVR model for further investigation. The PCA is performed on the matrix excluding the 
last y column, so we have more observations than degrees of freedom. 

3.2 SVR prediction and performance evaluation 

3.2.1 LOOCV scheme 

Leave-one-out cross validation (LOOCV) scheme is considered approximately unbiased for 
estimating the true (expected) prediction errors of machine learning methods [43], therefore, 
in this study LOOCV is firstly used to evaluate the performance of the SVR model. In 
LOOCV, each time an instance is selected from the original data set as the test data, and the 
remaining instances serve as the training data. SVR is trained with the training data and tested 
on the left out instance to get the deviation. The procedure is repeated until each instance in 
the data set is tested once and the performance of SVR is averaged over all instances. 

The 135 denoised instances are introduced to the LOOCV-SVR model, and the predicted 
concentrations against the actual values are plotted in Fig. 3. The distributions of actual and 
predicted concentrations in LOOCV are shown in Fig. 3(a), and the fitting results of the 
predicted concentrations against the actual values are shown in Fig. 3(b), where a Y = X line 
is also provided as the reference. Note that the closer the scatter plots are to the reference line, 
the more reliable is the predictions from the regression model. The error analysis for 
prediction can also be quantitatively evaluated with the decision coefficient (R2) and mean 
square error (MSE). R2≤1 is the correlation coefficient of the predicted values and the actual 
values. MSE≥0 is the mean square deviation between the predicted values and the actual 
values. Larger R2 values (close to one) and smaller MSE values (close to zero) indicate better. 
As shown in Fig. 3 (a), the LOOCV-SVR model produces a result of R2 = 0.97272 and MSE 
= 0.015865 on 21 concentration in the range between 0.5 to 35 mg/ml. The inset figure in Fig. 
3 (b) presents a clearer vision of fitting results for the lower concentrations (0.5-5 mg/ml). 
The predicted values estimated using the LOOCV-SVR model are found to be in close 
agreement with the actual values. 
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Fig. 3. LOOCV-SVR prediction for various concentrations in the range from 0.5 to 35 mg/ml. 
(a) The distributions of actual and predicted concentrations in LOOCV, the valid value of x 
axes is from 1 to 135 represents the 135 spectroscopy measurements; (b) The actual 
concentrations against the predicted concentrations in LOOCV. 

3.2.2 Hold-out validation scheme 

In the LOOCV scheme, one test instance is left out in each round to validate the SVR model 
trained with the remaining instances. Instances of the same concentration with the test one are 
actually involved in the training set, which could ease the prediction of SVR on the test 
instance. However, the detected concentration in real-world may not be included in training 
concentration sequences for prediction. 

In order to test the accuracy of SVR model in scenarios where a test instance has no 
exemplar of the same concentration in the training data, a hold-out validation scheme is 
subsequently used. Particularly, in each run of the validation, all instances from one 
concentration are held out as the test data, and the remaining instances from other 
concentrations serve as the training data. SVR is trained on the training data and tested on the 
hold-out instances from a totally unknown concentration. The procedure is repeated until each 
concentration is tested once and the performance of SVR is attained by averaging over all test 
instances. Since no closer exemplars existing in the training data for a test instance, the 
prediction performance of SVR in hold-out validation is reasonably believed to be poorer 
than in LOOCV. The prediction results of SVR using hold-out validation are shown in Fig. 4. 
It is observed that the prediction in hold-out scheme is less accurate than LOOCV scheme, yet 
the predicted values fit the actual values with acceptable accuracy (R2 = 0.91651 and MSE = 
0.051639), which suggests the feasibility of the proposed framework for real-world 
concentration prediction. A classifier like SVR trained with the discrete set of data can work 
relatively well on a continuum if it correctly captures the underlying distribution of the data. 
Moreover, the accuracy of the framework can be further improved as long as more 
measurements for more concentrations are prepared to train the SVR, so that any new 
instance could find highly similar exemplars in the training data. 
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Fig. 4. The prediction results using hold-out validation for various concentrations in the range 
from 0.5 to 35 mg/ml. (a) The distributions of actual and predicted concentrations in hold-out 
validation, the valid value of x axes is from 1 to 135 represents the 135 spectroscopy 
measurements; (b) The actual concentrations against the predicted concentrations in hold-out 
validation. 

3.3 Identification of discriminating frequencies to concentrations 

To identify the most discriminating/relevant frequencies related to the concentration, the MIC 
values of the 43 frequencies against the concentrations are calculated and sorted in 
descending order. Table 1 presents the top five relevant frequencies based on MIC values. In 
addition, the top k relevant frequencies are selected to test the performance of SVR in 
LOOCV scheme. As shown in Fig. 5, the R2 value of the prediction significantly improves as 
k increases from one to three, and afterward the trend becomes relatively steady, which 
suggests the terahertz spectral properties in different concentrations can be sufficiently 
characterized by the top three frequencies. It should be noted that these frequencies are not 
absorption peaks, but they are frequencies that can be used to discriminate between samples. 
To further visualize the discriminability of the top relevant frequencies, the concentration 
distributions of all instances in the top three relevant frequencies, namely 1.2, 1.1, and 0.5 
THz are plotted in Fig. 6, where different concentrations are shown in different colors. It is 
interesting to find that the instances in the same concentration tend to cluster together and 
instances form different concentrations are likely separated from each other in the plots. It 
reveals the majority of the instances are distinguishable with respect to the top three 
frequencies. 

The results in Fig. 6 show that measurement groupings are not monotonic in terms of the 
concentrations. That is the reason we proposed to use SVR with a radial basis function kernel 
to map the original data to a higher-dimensional space. In this way, the non-linear data in the 
original lower-dimensional space is very likely become linear in the higher-dimensional 
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space. MIC technique is also demonstrated to identify non-linear relationship of the data well 
as shown in Fig. 6. 

 

Fig. 5. The curves of R2 with different the number of the input relevant frequencies 

Table 1. The top five relevant frequencies based on MIC values 

Rank MIC value Frequency (THz) 
1 0.933470 1.2 
2 0.923787 1.1 
3 0.899503 0.5 
4 0.890793 1.7 
5 0.887096 0.4 

 
Furthermore, the BSA was dissolved in the DI water so that no impurities exist to 

interrupt the BSA deposited thin-films spectra. The identified top relevant frequencies can be 
recognized as the feature frequencies of BSA proteins themselves in the terahertz region, 
which are particularly affected by the varying quantity of protein. To highlight the features of 
these discriminating frequencies and illustrate how the collective vibration modes respond to 
these frequencies into the BSA protein, the long-wavelength elastic vibration model of a 
spherical particle [44] is adopted, assuming BSA is a globular protein. The frequencies of 
spheroidal oscillations are derived as functions of the particle radius R and multipole degree l. 
The frequencies of spheroidal vibrations vs are found to be the formula vs = v0[2(2l + 1)(l-
1)]1/2, where v0 stands for the basic frequency of a spheroidal deformation mode of an elastic 
sphere, with v0

2 = μ/(ρ0R
2), where μ and ρ0 are the shear modulus and the bulk density, 

respectively. In this framework, the model parameters used for obtaining the theoretical 
calculation are given in ref [45,46]. Accordingly, the frequency v0 = 0.3 THz is obtained for 
the lowest mode which is closer to the two discriminating frequencies at 0.5 and 0.4 THz in 
Table 1. Whence, for l = 2 and l = 3, the calculated frequencies are found at 1.1 and 1.8 THz 
which could be associated with the other three most discriminating frequencies, namely 1.1, 
1.2 and 1.7 THz in the top five relevant frequencies. This result deduces that the top few 
discriminating frequencies identified by MIC are approximately closer to the fundamental 
vibration frequencies according to a spheroidal deformation mode of an elastic sphere with 
the varying dipole excitation order. Here, the discrepancy can be attributed to the non-
spherical shape of the BSA which leads to the uncertainties in the predictions of frequencies 
calculation. Meanwhile, the performance of MIC can be considerably improved by increasing 
the new instance in the training data. 
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Fig. 6. The distribution of the instances in (a) the 3D-space of the top three relevant 
frequencies, and in (b)(c)(d) the corresponding 2D projections in the top two frequencies 
respectively. The units for the x, y, and z axes are normalized units represent the amplitude of 
the complex transmission coefficient of the samples. 

4. Conclusion 

In this paper, we employed terahertz time domain spectroscopy for the first time to probe 
BSA deposited thin-films prepared using solutions with concentrations ranging from 0.5 to 35 
mg/ml. Based on the PCA denoising method, the valid data set of THz transmission 
coefficient spectra was input to learn the underlying model of the frequencies against the 
concentrations by the support vector regression method. The learned mode accurately predicts 
the concentrations of the unknown test samples with a coefficient of determination of R2 = 
0.97272. Furthermore, the maximal information coefficient is applied and three most relevant 
frequencies to the target concentrations are identified at 1.2, 1.1, and 0.5 THz, respectively. 
This means that a good prediction for BSA concentration can be achieved by using the top 
three relevant frequencies further proves the efficiency and practicability of the terahertz 
spectroscopy and machine learning methods. Additionally, these frequencies can be 
associated with the fundamental vibration frequencies for BSA protein according to a 
spheroidal deformation mode of an elastic sphere by varying dipole order. It denotes the 
different quantity of protein associated with a surface in a thin-film state can induce the 
reorientation changes accompanied by vibrational energy distribution. This result further 
indicates that the origin and intrinsic properties of BSA protein detected by terahertz 
spectroscopy can be uncovered and highlighted particularly by machine learning methods. 

Our measurements and modeling highlights the unique capabilities of machine learning 
methods for extracting obscure characteristics from terahertz spectra for bio thin-films. Our 
results provide further evidence that terahertz spectroscopy in combination with machine 
learning methods is a sensitive analytical tool to evaluate quantity of deposited proteins in 
thin film systems for quality control and monitoring in the future. 
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